Adaptive Learning of Polynomial Networks: Genetic Programming, Backpropagation and Bayesian Methods (Genetic and Evolutionary Computation): Nikolay Nikolaev, Hitoshi Iba,
Springer | ISBN: 0387312390 | 2006-05-03 | PDF (OCR) | 316 pages | 15.5 Mb
This book delivers theoretical and practical knowledge for developing algorithms that infer linear and non-linear multivariate models, providing a methodology for inductive learning of polynomial neural network models (PNN) from data. The text emphasizes an organized model identification process by which to discover models that generalize and predict well. The empirical investigations detailed here demonstrate that PNN models evolved by genetic programming and improved by backpropagation are successful when solving real-world tasks.
Adaptive Learning of Polynomial Networks is a vital reference for researchers and practitioners in the fields of evolutionary computation, artificial neural networks and Bayesian inference, and for advanced-level students of genetic programming. Readers will strengthen their skills in creating efficient model representations and learning operators that efficiently sample the search space, and in navigating the search process through the design of objective fitness functions.
No comments:
Post a Comment